

Año: 2022

Título artículo: Can SO₂ reduction in white wines be achieved by using CO₂ saturated grape musts ?.

Revista, volumen, páginas: Wine&Viticulture Journal; 22: 22-25.

Autores: Pedro Miguel Izquierdo Cañas, Adela Mena Morales, Esteban García Romero, Lourdes Marchante Cuevas, Víctor Cejudo Martín de Almagro, Sonia Guri Baiget, Jordi Mallen Pomes

RESUMEN:

The purpose of this work was to study the possibility of partially or totally SO₂ replacing by using saturation of grape musts with CO₂ at the prefermentative stage. No differences were observed in main oenological parameters between wines from musts un- and treated with CO₂. Chromatic characteristics of all wines, at the bottle stage, showed similar values of lightness. Wines from CO₂ saturated grape musts were characterized by more greenish tones in color according to CIELab a* coordinate, visual attribute demanded by consumers in this type of wines. In addition, the decrease of SO₂ doses showed wines with more yellow color and higher values of absorbance at 420 nm. Regarding volatile composition, it is noteworthy that the saturation of must with CO₂ and the consequent SO₂ dose reduction resulted in a fruit- and floral-driven wine style due to the higher content in certain esters that contribute most to the aromatic character of white wines. The sensory analysis of wines was carried out by Napping[®] technique. The musts treated with CO₂ in the prefermentative stage provided more aromatic and fruity wines. After 12 months of storage, wines from must treated with CO₂ and without SO₂ doses showed lower lightness and a yellow color with more greenish tones. From a microbiological point of view, wines have been stable against acetic bacteria, but the absence of SO₂ has led to the development of malolactic fermentation in the bottle.

Agradecimientos:

This research was funded by Carburos Metálicos-Air Products Group. P. M. Izquierdo-Cañas thanks the European Social Fund and the Castilla-La Mancha Regional Government for co-funding his contract through the INCRECYT program.